Kinetics of Selenate and Selenite Adsorption/Desorption at the Goethite/Water Interface

نویسندگان

  • Pengchu Zhang
  • Donald L. Sparks
چکیده

w Kinetics and mechanisms of selenate and selenite adsorption/desorption a t the goethitelwater interface were studied by using pressure-jump (p-jump) relaxation with conductivity detection at 298.15 K. A single relaxation was observed for selenate Se0:adsorption. This relaxation was ascribed to Se0,2on a surface site through electrostatic attraction accompanied simultaneously by a protonation process. The intrinsic rate constant for adsorption (log k';"t = 8.55) was much larger than that for desorption (log l ~ $ ~ = 0.52). The intrinsic equilibrium constant obtained from the kinetic study (log Piketic = 8.02) was of the same order of magnitude as that obtained from the equilibrium study (log F:tdel = 8.65). Unlike Se0,2-, selenite adsorption on goethite produced two types of complexes, XHSe030 and XSeOC, via a ligand-exchange mechanism. Double relaxations were attributed to two reaction steps. The first step was the formation of an outer-sphere surface complex through electrostatic attraction. In the second step, the adsorbed selenite ion replaced a H 2 0 from the protonated surface hydroxyl group and formed an inner-sphere surface complex. A modified triple layer model (TLM) was employed to describe the adsorption phenomena. The intrinsic equilibrium constants obtained from the equilibrium modeling (log P" = 20.42 for XHSeO,O,and 15.48 for XSeOC) and from the kinetic studies (log Kmt = 19.99 for XHSe0,O and 16.24 for XSe03-) were similar, which further verified the hypothesized reaction mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macroscopic and spectroscopic characterization of selenate, selenite, and chromate adsorption at the solid-water interface of gamma-Al(2)O(3).

The interaction of selenate, selenite, and chromate with the hydrated surface of gamma-Al(2)O(3) was studied using a combination of macroscopic pH edge data, electrophoretic mobility measurements, and X-ray absorption spectroscopic analyses. The pH edge data show generally increased oxyanion adsorption with decreasing pH, and indicate ionic strength-(in)dependent adsorption of chromate and sele...

متن کامل

Adsorption mechanism of selenate and selenite on the binary oxide systems.

Removal of selenium oxyanions by the binary oxide systems, Al- or Fe-oxides mixed with X-ray noncrystalline SiO(2), was previously not well understood. This study evaluates the adsorption capacity and kinetics of selenium oxyanions by different metal hydroxides onto SiO(2), and uses X-ray absorption spectroscopy (XAS) to assess the interaction between selenium oxyanions and the sorbents at pH 5...

متن کامل

Selenium adsorption to aluminum-based water treatment residuals.

Aluminum-based water treatment residuals (WTR) can adsorb water- and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 h in selenate or selenite solutions at pH values of 5-9, and then analyzed for selenium content. Selenate and selenite adsorption edges were unaffected ...

متن کامل

Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface.

Sorption processes at the mineral/water interface typically control the mobility and bioaccessibility of many inorganic contaminants such as oxyanions. Selenium is an important micronutrient for human and animal health, but at elevated concentrations selenium toxicity is a concern. The objective of this study was to determine the bonding mechanisms of selenate (SeO4(2-) and selenite (SeO3(2-) o...

متن کامل

High efficiency adsorption and removal of selenate and selenite from water using metal-organic frameworks.

A series of zirconium-based, metal-organic frameworks (MOFs) were tested for their ability to adsorb and remove selenate and selenite anions from aqueous solutions. MOFs were tested for adsorption capacity and uptake time at different concentrations. NU-1000 was shown to have the highest adsorption capacity, and fastest uptake rates for both selenate and selenite, of all zirconium-based MOFs st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001